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Abstract. In human-centered assurance, an emerging field in technology-
assisted surgery, humans assess algorithmic outputs by interpreting the
provided information. Focusing on image-based registration, we investi-
gate whether gaze patterns can predict the efficacy of human-machine
collaboration. Gaze data is collected during a user study to assess 2D /3D
registration results with different visualization paradigms. We then com-
prehensively examine gaze metrics (fixation count, fixation duration, sta-
tionary gaze entropy, and gaze transition entropy) and their relationship
with assessment error. We also test the effect of visualization paradigms
on different gaze metrics. There is a significant negative correlation be-
tween assessment error and both fixation count and fixation duration;
increased fixation counts or duration are associated with lower assess-
ment errors. Neither stationary gaze entropy nor gaze transition entropy
displays a significant relationship with assessment error. Notably, visu-
alization paradigms demonstrate a significant impact on all four gaze
metrics. Gaze metrics hold potential as predictors for human-machine
performance. The importance and impact of various gaze metrics re-
quire further task-specific exploration. Our analyses emphasize that the
presentation of visual information crucially influences user perception.
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1 Introduction

Surgery is undergoing a digital transformation, transitioning from relying solely
on human skill to integrating advanced tools such as imaging and robotics. De-
spite these technological advancements, the need for human judgment in this
high-stakes, safety-critical domain remains unchanged [5]. The emergence of
human-centered assurance in technology-assisted surgery underscores the impor-
tance of integrating human operators into the technological loop. Delving deeper
into human-machine teaming is critical for providing system oversight for patient
safety and the efficacy of surgical procedures [4]. Thus, understanding how op-
erators perceive, interpret, and act upon the data and suggestions offered by the
technology is imperative for the success of the overall safety assurance.

A crucial window into understanding this process is the human gaze, which
serves as a bridge between external stimuli and internal cognition [1]. As a natu-
ral human behavior, the gaze reflects attention and cognitive processes [6, 8]. The
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Fig. 1. Heatmaps of gaze patterns when human assesses machine’s error.

patterns of gaze, including trajectories and fixation points, can offer profound
insights into cognitive processes, understanding, and eventual decisions.

In the healthcare domain, technological progress has broadened the scope of
gaze research. Gaze data from radiologists interpreting x-ray images can augment
the training of deep learning models for computer-aided diagnosis systems [2,
11]. It is also emerging as a metric to distinguish expertise levels, with studies
reporting different gaze patterns between experts and novices in radiography
[10] and surgical simulations [9].

Expanding on these developments, we extend gaze analysis to another area
of healthcare. Our focus centers on 2D /3D registration, a critical algorithm in
image-guided surgery that enables optimal spatial alignment of 3D preopera-
tive models with 2D intraoperative images, as depicted in the supplementary
material. Since the true solution is not known during surgery, errors cannot be
detected automatically. A feasible approach to ensuring safety is to involve hu-
man operators to verify the system’s results [3]. In this study, we investigate
users’ gaze patterns during the visual assessment of the algorithm’s results. This
addresses a critical area that has yet to be explored in human-centered assurance
in technology-assisted surgery: understanding gaze patterns during human-based
spatial alignment assessment. Figure 1 provides visual examples of gaze patterns
when users correctly versus incorrectly assess machine-generated registration er-
rors, highlighting the intricate nature of the task and setting the stage for a
detailed examination in our study.

We tailor gaze metrics well-established and standard in eye-tracking research
to 2D /3D registration assessment by computing weighted metrics with image
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similarity metrics in the areas of interest. Analyzing these weighted metrics of-
fers a valuable perspective on gaze patterns during human-based assessment of
spatial alignment that has not been previously documented. By examining how
users visually interact with algorithmic outputs, we can uncover the underly-
ing factors that contribute to their assessment performance. This is not merely
exploratory but holds practical significance; understanding gaze patterns can
lead to the development of novel assurance mechanisms. Using gaze data, these
mechanisms can potentially predict the accuracy of a user’s assessments, thus
providing a quantitative measure of the user’s evaluation uncertainty, serving as
an assurance metric for the human-machine team.

Paradigm 1 - Image 1/12

Paradigm 1: Paradigm 2: Paradigm 3:
Neutral Attention-Guiding Correspondence-Suggesting

Fig. 2. Experimental setup showcasing the gaze tracker and the user interface used
in the study. Includes example cases for each visualization paradigm, with zoomed-in
bubbles to emphasize key features: Paradigm 1 - contour only, Paradigm 2 - contour +
attention-guiding circles, Paradigm 3 - contour + correspondence-suggesting arrows.

2 Methods

2.1 Gaze Data Collection

We recruited 22 participants, each with some background in medical imaging,
image processing, or both, to evaluate simulated 2D /3D registration results using
different visualization paradigms. The paradigms included: Paradigm 1: Neutral
— outline of the projected digitally reconstructed radiograph (DRR, a computed
2D image from CT data simulating a conventional x-ray) only; Paradigm 2:
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Attention-Guiding — outline and circular highlights to regions with possible mis-
match; Paradigm 3: Correspondence-Suggesting — outline and arrows connecting
the outline to possibly better matching visual features; examples can be seen in
Figure 2. For specific details of the visualization paradigms and simulation of
registration results, we kindly refer to [3].

The overall experimental setup is depicted in Figure 2. The study was con-
ducted on a 15.6-inch display with a resolution of 3840 x 2160 to ensure clarity
and detail in the images and overlays. To maintain a standardized viewing expe-
rience, participants could not pan or zoom into the registration correspondences,
allowing focus on their gaze patterns in relation to the fixed images presented.

Participants encountered all visualization paradigms in a randomized order
to negate any learning effects. The study began with an introductory briefing,
followed by a preparatory step for each paradigm. In this step, participants
were presented with examples demonstrating varied degrees of registration errors
specific to that paradigm, thus familiarizing them with the range of potential
misalignments for the subsequent evaluation phase. Participants then assessed
the alignment of 12 x-ray images with their registration overlay, indicating their
confidence level for each image.

During the study, participants’ gaze data were collected using a Gazepoint
GP3 eye tracker operating at 60Hz. We opted for a stationary screen-based eye
tracker due to its anticipated accuracy for our tasks (i.e., inspecting an image and
overlays on a screen). We excluded 12 participants due to failed gaze tracking.
This exclusion was based on criteria such as frequent or prolonged failures in eye
tracking recording, often caused by participants altering their initial position
or wearing glasses that interfered with the tracker, impacting gaze recording.
The integrity of our data was paramount, and this strict exclusion criterion was
necessary to ensure the reliability of our findings.

2.2 Areas of Mismatch Quantification

We posit that areas that exhibit a large mismatch between edge information
in the acquired x-ray image and DRR are most informative for alignment. To
enable quantitative evaluation of how much participants spent visually assessing
those regions, automated techniques to identify areas of mismatch are needed.
We identify areas of mismatch through normalized cross-correlation (NCC).

Given two images, an x-ray, and its corresponding DRR of the simulated
registration offset, the NCC between patches of these images serves as a metric
to generate a set of weights for subsequent weighted aggregation of gaze metrics.
The metric values are inverted so that regions with higher metric values are
represented with smaller weights and lower metric values are with larger weights,
thus putting more importance on the areas of higher mismatch.

2.3 Gaze Metrics

Given the n square patches in the image, these are referred to as Areas of Inter-
est (AOIs). Traditional eye tracking metrics, including fixation count and dura-
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tion, are calculated in tandem with gaze entropies [7]. These combined metrics
effectively quantify the attention distribution, scanning behavior, and overall ex-
ploration extent across the AOIs. The weights detailed in Section 2.2 attributed
to each AOI play a pivotal role in these evaluations. Within the framework of
analyzing 2D /3D registration results, these weights emphasize areas with pro-
nounced mismatches, as such regions correlate directly with the registration’s
alignment errors. As a result, analyzing these weighted gaze patterns offers a
valuable perspective on the human user’s proficiency in focusing on mismatched
areas for their assessment.

Fixation Count The weighted fixation count for the i** AOI is given by:

FCaor, =Y wi-f;

i=1

where w; is the weight for AOI; and f; is the total fixation count in AOI;.

Fixation Duration The weighted fixation duration for the i** AOI is repre-

sented as:
n

FDaor, = Z w; - d;
i=1
where w; is the weight for AOI; and f; is the total fixation duration in AOI;.

Stationary Gaze Entropy Stationary gaze entropy quantifies the overall spa-
tial dispersion of gaze:

SGE = - pilog(p; + 0.00000001)
i=1

where p; is the probability of a gaze remaining stationary in the respective AOI.

Gaze Transition Entropy Gaze transition entropy quantifies the rate of fix-
ation transitions between AOIs:

GTE = - p; [ > tijlog(ti; +0.00000001)

i=1 j=1

where p; is the stationary probability for the i** AOI and t;; is the transition
probability from the i** AOI to the j** AOL

2.4 Hypotheses

H1. Gaze metrics can be predictors for human-based 2D /3D registration as-
sessment.
H2. Gaze metrics are influenced by different visualization paradigms.



6 S. Cho et al.

(3 p=0.016 *+ . p=0.022**
.

Stationary Gaze Entropy

Fig. 3. Linear regression plots of gaze metrics against assessment error. Each line
corresponds to an individual user, treated as a random effect in the model.

2.5 Data Analysis

To test our hypotheses, we utilized linear mixed models (LMM) for their ability
to account for individual differences among participants, treating participants
as a random effect to accommodate variability in gaze patterns. We ensured the
dependent variable, assessment error, was continuous and approximately nor-
mally distributed, and we normalized the gaze metrics during preprocessing.
To confirm normality in residual distributions, we conducted an extensive eval-
uation using Quantile-quantile (Q-Q) plots and D’Agostino’s K-squared Test.
The Q-Q plots were visually inspected to assess if the residuals followed a nor-
mal distribution. D’Agostino’s K-squared Test was used to statistically verify
the normality of residuals, with p-values above 0.05 indicating a normal distri-
bution. Additionally, we evaluated homoscedasticity by examining the spread
of residuals against fitted values. Independence of observations was checked by
ensuring that the data collection methods did not introduce any dependencies
among observations. Python was used for data analysis.

3 Results

3.1 Can gaze metrics be predictors for human-based assessment
performance?

For Hypothesis 1, key assumptions were examined, including independence of ob-
servations and homoscedasticity, before proceeding with the analysis. Q-Q plot
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Fig. 4. Boxplots illustrating the variations in gaze metrics across different visualization
paradigms.
™*not significant, *p < 0.05, **p < 0.01, *** p < 0.001

observations revealed residuals were nearly normally distributed. This was cor-
roborated by the D’Agostino’s K-squared Test, which produced p-values above
0.05 across all four LMM models for various gaze metrics, implying residuals
closely resembled a normal distribution.

The findings, summarized in the supplementary material and visually repre-
sented in Figure 3, indicate a statistically significant inverse relationship between
two specific gaze metrics — fixation count and duration — and assessment error.
The fixation count showed a coefficient of -0.219 (p=0.016), suggesting that an
increase in fixation count correlates with decreased assessment errors. This rela-
tionship was significant at the p < 0.05 level. Similarly, fixation duration had a
coefficient of -0.220 (p=0.022), indicating that longer fixation durations are asso-
ciated with reduced errors, also significant at the p < 0.05 level. The descending
trajectories of the regression lines for these metrics in the scatterplots underscore
these trends. In contrast, stationary gaze entropy and gaze transition entropy
did not demonstrate statistically significant relationships with assessment error.
Their coefficients of -0.074 (p=0.216) and 0.007 (p=0.943), respectively, suggest
a lack of correlation with assessment error, as further shown by the faint linear
progression in their scatterplots.

These findings support our first hypothesis, demonstrating that certain gaze
metrics, specifically fixation count and duration, can indeed serve as predic-
tors for human-based assessment performance in 2D /3D registration tasks. The
non-significant results for other metrics like stationary gaze entropy and gaze
transition entropy highlight the specificity of the gaze metrics’ predictive power.

3.2 Do visualization paradigms affect gaze metrics?

For Hypothesis 2, the categorical variable “paradigm” represents the three dif-
ferent visualization paradigms, with Paradigm 1 as the reference category. The
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independence of observations and homoscedasticity were confirmed. Visual in-
spection of Q-Q plots indicated that the residuals closely approximated a nor-
mal distribution. D’Agostino’s K-squared Test further supported this, yielding
p-values above 0.05 for LMM models for fixation count, fixation duration, and
gaze transition entropy. However, stationary gaze entropy had a p-value below
0.05, so it should be interpreted with caution.

The coefficients for “Paradigm 2 vs. 1”7 and “Paradigm 3 vs. 1” in the model
represent the changes in gaze metrics when shifting from Paradigm 1 to Paradigms
2 and 3, respectively. Statistically significant p-values in these coefficients would
suggest meaningful differences in gaze metrics attributable to the visualization
paradigms. Our findings, as graphically depicted in Figure 4 and detailed in
the supplementary material, reveal distinct effects of these paradigms on gaze
metrics. Specifically, both Paradigms 2 and 3 significantly influenced the fixa-
tion count and duration compared to Paradigm 1, with p-values of 0.007, 0.013,
and less than 0.001 and 0.002, respectively. This indicates a notable impact of
visualization paradigm on these gaze metrics. For stationary gaze entropy, a
significant effect was observed only for Paradigm 2 (p=0.012), while Paradigm
3 did not show a significant difference. Similarly, gaze transition entropy was
significantly influenced only by Paradigm 2 (p=0.001), with no significant effect
observed for Paradigm 3. These results underscore the differential impact of vi-
sualization paradigms on various gaze metrics, affirming their role in shaping
user interaction and interpretation in 2D /3D registration tasks.

4 Discussion and Conclusion

Two gaze metrics, fixation count and fixation duration, were significant indica-
tors of human-based registration error assessment performance. These metrics
underscore the importance of focused observation for accurate evaluation, sug-
gesting that prolonged, deliberate gaze upon mismatch areas correlates with
increased assessment precision. Conversely, stationary gaze entropy and gaze
transition entropy showed no significant correlation. This may be because, de-
spite the presence of misalignment cues, they were presented statically, leaving
users to decide where and when to look. This insight informs the design of visu-
alization paradigms that dynamically guide users’ attention to mismatch areas,
enhancing assessment accuracy. Future research could explore paradigms that
sequentially reveal misalignment cues based on severity, potentially making en-
tropy calculations more controlled across individuals.

Visualization paradigms also significantly impacted gaze metrics. Prior stud-
ies, such as [3], have indicated varying efficacies of different paradigms. This
study resonates with their findings, demonstrating that the mode of visual pre-
sentation affects how users perceive the given information. Further research is
needed to understand better how these findings can inform the design of more
effective visualization and interaction methodologies.

Although our sample size is currently small, the observed significant effects
and large effect size provide a compelling basis for our findings. Informed by
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this preliminary work, future studies can be designed with more robust power
analysis and targeted participant recruitment.

Future work should refine data collection methods to minimize data exclu-
sion. Despite achieving significant effects with corruption-free data post-exclusion,
there is an opportunity for enhanced methodology. Participants altering their
position and eyeglasses interference were identified as common sources of gaze
recording failures. Future studies can explore advanced hardware for more sta-
ble, accurate gaze tracking. Considering alternative participant recruitment ap-
proaches, such as specific eyeglasses criteria, could improve data quality.

This study serves as a foundational step in understanding gaze metrics within
the human-machine partnership in image-guided surgery. Our empirical evidence
shows that gaze metrics have the potential to forecast error and uncertainty in
human-based registration assessment and that the efficacy of assessments is af-
fected by visual presentation. Yet, for a holistic comprehension, deeper and more
meticulous exploration is necessary. Understanding these interrelationships is
vital in formulating enhanced methodologies for human-in-the-loop technology-
assisted interventions. As the frontier of human-machine collaboration in surgery
continues to expand, these findings will be essential in establishing the reliability
and adaptability of such systems in various pursuits.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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